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EXECUTIVE SUMMARY

Periodically DCEC is tasked by OCA Headquarters to conduct what has been
commonly known as the "Flash Non-Blocking Study". The purpose of this study
is to resize the AUTOVON network to be sure the crisis calls receive
non-blocking service. The main tool that has been used to conduct this study
is a simulation (event by event) model. This model is very computer
expensive. Typically, 50 hours of CPU time are required to conduct the study.

DCEC has a mathematical network sizing model that both DCEC and OCA
headquarters use to resize the AUTOVON for its day to day operation. This
model is extremely fast and requires only a few minutes of CPU to do a
particular sizing run. Because of characteristics of the crisis traffic this
model cannot be used in its current form for the Flash Non-Blocking studies.
This technical note is the first step in an attempt to modify the mathematical
model so it can be used on these studies.

The mathematical model requires the ability to simply predict the link
performance of the class of traffic under consideration. In this technical
note we develop a sophisticated analytic link performance model and then use
it in a numerical analysis of the link behavior of crisis calls. This
investigation leads to the development of simply computable bounds which could
be used in our mathematical network sizing model.
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.[iNTRODUCTO'

Periodically, the Defense Communications Engineering Center (DCEC)

conducts a study for the Defense Communications Agency (DCA), the "Flash

Non-Blocking Study" [1]. In this study a crisis scenario for the worldwide

AUTOVON system is analyzed and the network resized to ensure the crisis calls

are not blocked in the network. This scenario postulates a certain numnber and

distribution of crisis calls that would have to be placed for the particular

situation being analyzed. These calls must receive non-blocking performance

from the AUTOVON network. The purpose of the study is to resize the links to

be certain that the required grade of service is received.

For normal resizing efforts of AUTOVON, DCEC uses its Network Design and

Analysis computer algorithm [2]. The current form of the algorithm can not

be used for the Flash Non-Blocking Studies because the arrival rate and

holding time characteristics of the crisis calls do not conform to the

algorithms assumptions for a normal AUTOVON call. Thus DCEC has been forced

to use an event by event simulation model to conduct the study.

After a typical simulation run, the engineer checks to see if the crisis

calls are receiving non-blocking service. If not, channels would be added and

deleted in the network based on engineering judgement and then another

simulation run is submitted. This trial and error process is continued until

the crisis calls receive the required non-blocking service. There is no

guarantee that this solution is the most economical one possible (i.e.,

optimum). For the normal resizing of AUTOVON via the DCEC Network Design and

..



Analysis argoritm cnis process is 6one entirely by tie computer an,, a near

)oti num solution is provided.

For each simulation run several replications have to be maoe because tnere

are only a finite number of crisis calls trying to use the network and the

multiple replications are required to attain statisticai confinence in the

grade of service estimates from the simulation run. Thus, a significant

amount of computer CPU time is required; a typical Flash Non-Blocking study

consumes about 50 hours of CPU time on the DCEC ITEL-AS5 computer.

This technical note is an initial effort to reduce this computer run time

and provide a better tool to conduct the Flash Non-Blocking Type Studies. The

Network Design and Analysis algorithm has a mathematical network performance

model [3] that iteratively converges to the performance of the network under

consideration. The computer run time of this performance model is

significantly shorter (order of magnitude)than a comparable simulation run and

hence would be desirable for use on the Flash Non-Blocking studies. It

converges to the network grade of service by considering the blocking on each

link of the network. Since no mathematical link performance model was

available which characterized the crisis calls, the network performance model

could not be used to address Flash Non-Blocking issues in the past.

In this technical report we present a mathematical link performance model

for this system. Section II of this report describes the mathematical model,

as well as some special cases. Several numerical examples are given in

section III. Finally, a few concluding remarks are given in section IV.
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I . A ' ATHE,.TIC AL I.10DEL

1. ASSUMPTIONS AND GENERAL DESCRIPTION

In this section we present a mathematical model for the performance of

crisis calls on a link of a communications network where ordinary calls are

usually using the channels. We assume that there are C channels, the arrival

process of the ordinary calls is Poisson with parameter x , and their holding

time is exponentially distributed with mean 1/p. There are a finite number,

say M, of crisis calls that are going to attempt to use these channels. The

interarrival time between the mth and (M+l) s t crisis call has a

distribution function, G(x), with mean I/a.

No queueing of either class of calls is allowed and if a crisis call

seizes a channel, it will hold the channel for at least as long as it takes to

have all the M crisis calls attempt to use the channels. Thus, if the mth

crisis call occupies a channel, it will still be holding the channel when the

Mt h crisis call attempts to find a full channel. We investigate the

behavior of the system with respect to the crisis calls.

Loss systems similar to this one have been considered in the past. The

main paper of interest is that of Kuczura [4]. In that paper the author

considers a loss system with two types of input processes, one Poisson and the

other a general renewal process. He shows that the blocking probability each

stream sees is different. Our system differs from his in the following ways.

3



First, one if our streams has only a finite number of calls that attempt to

use the channels; in Kuczura's paper there are basically an infinite number of

calls. The second 4ifference is in the nature of how long the crisis calls

hold the channels once they seize a channel. In Kuczura's paper it was

assumed that both classes of calls had the same exponentially distributed

holding time distribution. In our system the ordinary calls have the standard

exponentially distributed holding time, but the crisis calls hold the channels

for a period of time tnat is at least as long as it takes all crisis calls to

arrive. The final way our system differs from Kuczura's is that we allow the

crisis calls to preempt an ordinary call. We let be the probability an

arriving blocked crisis call will preempt a ordinary call using the channels.

For a network interpretation of this quantity, see reference [5].

Another paper, by Fischer [6], considers a system similiar to the one

examined here. In that paper the author studies a loss system with two

classes of customers with priorities. The effects of different mean holding

times for e3ch class of traffic is studied. That system differs from ours in

that we only have 3 finite number of calls that are allowed to preempt and

they only try once during the period of interest. Furthermore, the nature of

the holding time for the crisis calls is different in our case.

We have M crisis calls attempting to use the C channels. These channels

are currently being used by ordinary calls with a load, p=x/v. We are

interested in studying the behavior of the system with respect to the crisis

calls during the period of time the M crisis calls attempt to use the

channels. In order to do so we need some transient results 'or a standard

4
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Iar:aovian loss system Nitn C cnannels, -all arrival rate , and service rat.

That is we need the transient benavior of toe system w-.n only orainary 2au
2 .

Let Q(t) be the number of ordinary calls in the system at time t and

ri j(t)=Pr { Q(t)=jjQ(O)=ij; then from Riordan [7], when there are no crisis

calls arriving in [O,t], we have for i=O, l .... C, and j=O, 1, ... , C

C
ri j(t) = bj + E o,(i,j)e kw t

where

b J;

C r

r. (2)
r=O

C C-iF k)Fj

k(i'J) je FC (k)Fc'( E+1)

with

Fo(z) = 1

i

F (Z) Z ( P i-kz(z+l ) ...(z+k-l). (4)
1 k=0 k

The quantity FC(ek+1) in equation (3) is the derivative of Fc(Z)

evaluated at 4+I. The factorsek, k=1, 2, ..., C are the roots of the

5



I. ( 1 ~ ~ tr, r q)/, l " '(. . "

n I K ci:t I r 1c ';. i

C II

tis ' a r v I (I ' r i ' i l ') '- ,I S r C

I ) i 11 Cif t tr2' t )-!

- ( .(6)

Cw c

r I . r s '-.a a a t r S j-1 a oc it in t re tu-l, t ! t f) rc is

c 3~bl JK (XOt Or Pruc'1pts -:n urirlary (.al I then there aro j cr isi - calljS

rn tu e i-1' t'i f f ter ijt. arri ,ve, . 'nti I the, ', m h crisis ral I rri le

t rio' are C-j channels tor usr, b'/ the ordinary calls. Thus between any two

uCCO.-iv' v risis (-all ar,-ivai; the number of channels available to the

ordinary CaII S, 1r, ot ed hy 11, could be n=O, I ..... C-i. The probabilitv
(M)r ) will Ittr'minn iio' :a!' channeels are available after the (m-i)st

arrival.

WC, c,n ue ri.i(t ) and G(x to mathematicallv describe the behavior of

the ordinary calls durinq this time. Let us suppose the (m-l)St crisis call

6



arrives a'. t,_ 3r~ 111 En e - , -a1 i, lr n Lii ie

c:iannels vaiiOIe tj tre ordinary calls. Let Rijn. 1 te te pr'nao i ity

Q(tM )=j given Q(tm)=i;

then using (1)

R, ',n] =r r , (t)dG(t)

D+  b k i  4)(e;) 7

We assume that before tne crisis calls start to arrive the system has

reached steady state with respect to the ordinary calls. Furthermore, we

assume the initial crisis call sees the same distribution of the number of

ordinary calls in the system as an arriving ordinary call, so

b j=o

(1)
Pij (8)

0 j>_1

where oi is given by equation (2).

A general recursion for p(m) when m> 2 can now oe given as
i,j

7



p, ) R <j<C-i 9)
_- k . Rk[j]+3PC+l..i,pl c-j 11CJ]<C1p (,n-1I) R c-i]

l C-jIj RC-j,i

+ jp(f-L)0 ,, -1~ -, I , -

where J-i+j<C and P. M=O if Ljm. Thus from equations (8) and (9) we canl,3

recursively evaluate Phm.l'j"

There are two measures of performance with respect to the crisis calls:

the probability the mth crisis call is blocked, PB(m), and the probability

the mth crisis call is lost. The probability PB(m) represents the
th

probability the m crisis call sees all the channels busy. Whereas,

PL(m ) represents the disposition of the call upon arrival to the channels.

We have

C (10)
pB (m) E P

i=O iC-i

and

PL(m) = (I..)PB(m)+ PoC 01)

We note when B=O PB(m)=PL(m) and define the average blocking and loss
M

probabilities to be PB--= PB(m)/M and PL= 1  PL(m)/M.

8



In general, a olosed form expression for rj -,) -.hat satisfies equation
,j

(9) is nard to obtain. But, using tnat equation and equation (8), the values

of P(m) can be iteratively computed from P(m-1 sing a computer. There are

however some special uses that allow us to obtain more insight into the

behavior of the system.

2. THE SINGLE CHANNEL CASE (C=I)

In this case there is only one channel and so

Pi

) ---. T0 (12)Pi ,j = l+p 0

0 j=1

From equation (9), for m> 2 we have

P00 1+, 1
p(m)= p R l m 1 0[](

po P RIIl 1m(l1-B)m-1 (13)
10 i-iP llL

p(m)= I p  R i 1 ]m- 2(l_6 -
01 -

Sinc RI[I]: I-I][ ], (in)

Since R10 11] 1-R1  ], P (M) only depends on

9
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- L . 4
1+-4

out for C=I ye nave '3]=-;-Q, see L7], and so

+L~

For the m th customer the two measures of performance are his blocking

probability, P8 (m) and loss probability, PL(m). Form>_2, we have

PB(m) P )
10 0

: I-P ) (16)

R~ 1, ] -2i0[I]( 1 _3)m-

and a loss probability, PL(m)

PL(m) (1-B) PB(m),$P(m)
01

: PB(m)-B[p(m)+p(m)]+BP1)

pB(m) Bp(M) (17)

10

I - Rll[Il m 2 (l -~ m (Rlo[1]+BRll[l]).

For the case of m=l the desired results are

10



L1)= (i-2)o.

Using equation (17) we have

PB : p {I,'-(RIj [ I ] ( j - 6 ) ) M- I

PB =PL+(19)M(l+p) { I-RIj[I ](I-3}V(9

where

I M-1 +P (1-6 )MR 1]1M-1

PL = } { I . (20)

These results can be even further simplified for the cases where B=0 and

6=1. WhenS =0 the crisis calls does not return to preempt when blocked and

PL = Xj M-+ 0Rl[ 1  (21)
S l+P

= PB.

When =1 the crisis calls always return to preempt when blocked and we have

PL - -
M (22)

and

PB 1 1 + P

Equation (22) agrees with one's intuition; all but the first crisis call is

11



ost and tne first is ,locked with orobabilityo/2+o).

Several further results can be derived for this system by considering the

case where S=O. For that situation we have

~m=l
1+p

(23)

1 0 (R 1 1 l]m2 l m>21+0 RO 10 ]  m

and

PB = PL

1 R___11 _ (24)
- (M-1 + p R I -

1+p

It is straightforward to show, using equation (23), that for m=l, 2, ... , M

PB (m)-c PB( 1  (25)

and lim PB(m) = I. Thus the (m+l)st crisis call sees a higher blocking

than the mth crises call. Of course, the unequality makes sense, since the

crisis calls that contribute to the mth call blocking will also contribute

to the (m+l) s t crisis call blocking. If the mth call gets in then it also

contributes to the blocking of the (m+l)st call, and since the interarrival

distribution between two successive crisis calls is the same, the probability

12



tie (mr*it  crisis call gets plJcked is greater than te prJbailLy 1 ie

1nth call is blocked.

The other results follow from equation (24) and is analogous to the

result established in Kuczura [4]. In that paper he considers a loss system

with two classes of arrivals, one whose arrival process was descrioed by a

Poisson process and the other by a general renewal process. He shows, using

Jensen's inequality, that the blocking the general arrivals sees is minimized

when their interarrival distribution is deterministic. From equation (24) we

see that PB linearly depends on RII[l] where

R11[l] P + cp(P+ X,)
l+p l+p

Remembering that0(s) is the Laplace transform of the interarrival

distribution of successive crisis calls, then from Jensen's inequality,

Rll[l] is the smallest when that distribution is deterministic. The

distribution that minimizes Rl1 [l] also minimizes PB.

3. MEAN TIME BETWEEN CRISIS CALL ARRIVALS IS ZERO (a=-)

For this case and the next one we assume the interarrival distribution of

successive crisis calls is exponential. Here, the crisis calls all show up at

the same time and since they see the same distribution as the ordinary calls,

the probability the mth crisis call is blocked is the probability there are

(C-m+l) or more ordinary calls present. So for m<_C+l we have (Q is the steady

state number of ordinary calls in system)

13
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PB~m L rQr
r=C+1 -m

R-C-l-1-m

C (26)
E Pk /k!

R=O

=Or

C k

k=O

and PB(m)=l for m>C+I.

The expression for PB(m) given by equation (26) does not depend on the

capability of evaluating P~m) , for i0O, 1, ...,C. Unfortunately,
1,C-.L

developing an expression for PL(m) necessitates a knowledge of what

M)is. In general

PL(m) = (l-e)PB~m)+ P(m)

but P )equals the probability there are C crisis calls in the system
QIC

14



jusc after tne (7-l)3t crisis cal arrives. Let Ui ' ) ne tner

probability there are r crisis calls in the system just after the T ta crisis

call arrives and decides whether or not to preempt. Define uWO)=l and

(M)=O for r>m; then

r

r= rm-1 M) (I-PL(m)), U(m-l) PL (in) )rml(27)

U = (l.PL(m))

()(m-1) anpLm

iteratively defines U(r in terms of U r and

The loss probability for thp mth crisis call can be given by

PL (M) = (28)

(1-a)PB (m)+BU (M-i) mn2

where EB(PC) is Erlang's Loss Formula. So we can use equation (28) to

evaluate PL(1 ), then equation (27) to recursively determine UM , r=0,1.

These probabilities can be used via equation (28) to determine PL(2) and so

on.

4, MEAN TIME BETWEEN CRISIS CALL A2.IVALS IS INFINITE (ct=0)

For this case the average time between successive crisis call arrivals is



:.nr inli te. .11] 41npl i-_ s tn at, zFte Ui, l.ast crisi41s -a I. at-i '. es an ..... ? a

r crisis ciils in the system, tne probaoility the next crisis cail sees

ordinary calls present is given by

i
0

Rk, i[C-r]= -  !i O i. .. C r (29)

C-r
7 p

M=0

independent of k.

Using the probabilities defined in equations (27) and (28)

we have

M-i
PB(m) = E Ur (m-l) B (p C-r)

r-,O

(30)

PL(m) (l-B)PBW()+8UC (m-i)

Although difficult to show mathematically, it is intuitively true that the

values of PB(m) and PL(m ) given by equations (26) and (28) serve as upper

bounds on these probabilities for an arbitrary value of a. Furthermore, the

values given by equations (30) are lower bounds on PB(m ) and PL(m ) for

any a. This statement is demonstrated in the numerical examples we present

in the next section.

16
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In all tne numerical examples tnat we considered, we have assumed the

interarrival distribution between successive crisis calls is exponentially

distributed with mean a-l. Thus (-eku) in equation (7) is given by

C(31)

(-k k

In this section we examine PB and PL as a function of a and B . We also

present some numerical results for PB(m) and PL( m ) as a function of B.

For a given value of X,, ,, C and M several significant numerical problems

have to be overcome before P(m) can be recursively evaluated using equation

(9). The first problem is the determination of the roots of n roots 61, 6 ..

of the equation

Fn(z+1)=O,

where n=O,l,...,C. We used the Laguerre's iteration method [8] as suggested

by Kuczura [4] to find these roots. We also followed some of the helpful

numerical hints Kuczura discovered when he was forced to find these roots.

Even for -moderately small values of C, say C=20, the behavior of the function

Fc(z+l) is extremely erratic and care must be taken in any numerical procedure

attempting to find the roots. Finally, it should be pointed out that the

function Fc(Z) and hence Fc z) can be recursively evaluated using the

relations giver in [4] or [7]. Finding the roots poses the biggest numerical

17
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oroolem one ias to t]ce. The rernaining .0mpI tit1011Ond Seps re

-ii int-: r- ,ir I rn Ji "t , ino P

Table I presents tne sensitivity of .,' and PL"MI to tne prooaDi1ity

of preemption. For that table, C=15, '=20, =!5 erl3ngs and ,=l0. When - =0

qe haJ 23(m)=gsi), o ut as S 3pproacned I, 4a r . s 3pproacninq zero for

rn 1C= 15 and I 'or m -=15. It is interesting to see oinat haopens to PBm)

as 3-1 . For m small the value of PB(m) remains relatively constant as --I;

but as m approaches M tnis is not true. Table I also demonstrates a result we

gave for the case C=l; that is, PB(m )< PB(r+l) For tnis table we see

tnat PB'm ' and PL(' ) are both monotonically increasing in n.

Figure 1 gives a family of curves for the average blocking and loss

probability as a function of for ordinary loads of 5, 15 and 25 erlangs. The

solid lines are the blocking probability and for each of the three cases it

appears that PB is a linear function of , The dashed lines give the average

loss probability. At 6=0 we have PB=PL and when B=l all three curves for the

average loss probability converge to the same value (.33). As expected, PB is

monotonically increasinq in whereas PL is monotonically decreasing. With

regard to PL, it is interesting to point out that its lower bound is (M-C)/M

for M>C and the upper bound is PB at B=0.

18
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,.BLE I. SEASiTIvirES OF INDIVIDU'AL 3LOCKTING A<- LOSS 3 3XTE

T) 7"H. DR 1A3'!TY OF 'PREE:' PTON

'=Cl, A=.?Q =5 and . =10)

2 o .2 .4 .6 .8 1.0
PO PL~' PB~ PL ~ TP L~ 8 l p L(m )I§B(m 17VTh E(M PL(ml

.18 .18 .18 .14 .18 .11 . . .18 .041

.23 .23 .23 .18 .09 .23 .05 .23

3 .27 .27 .28 .22 .28 .17 .29 .11 .29 .06 .29 .0

S.33 .33 .34 .27 .35 .21 .37 . 1 5  .38 .08 I .40 .0

.40 .40 .41 .33 .43 .26 .45 .18 .47 o0 .49 0

6 .46 .46 .48 .39 .51 .30 53 i .21 .55 .11 .56 .0- . -.- -.. - - - .__.__.___, _ __.
7 .52 52 .54 .43 .56 .34 .58 .23 .60 .12 .62 .0

8 .56 .56 1.59 .47 .61 .37 .63 .25 .65 .13 .67
9 9 .9 6 50 .6 9 .67 .7 6 1 .72 .

10 62 .62 .65 .2 67 .40 .70 .28 .72 .15 .76 .0

11 .64 .64 .67 .64 .70 .42 .73 .29 .72 .15 .80 .0
. ... . .. 1 i ' . . 6 . ; '

12_ .66 .66 .69 .55 .72 .43 .7 .30 .90 .16 .84 .0

13 .67 .67 .71 .51 .75 .45 .79 I .31.83 .17 .88 .0- , .. .-..-. i I : _

14 .69 .69 .72 .58 .77 .46 .81 3 . 86 . 92i .0

15 .70 .70 .74 .59 .79 .47 .84 .34 .90 .18 .96 .0

16 .71 .71 1 .76 .61 81 .49 .87 .36 .93 .30 1.00 1.00

.72t .77 .62 .83f .50 .89 .39 .96 .50 1.00 1.00t

18 .73 .73 .79 .63 .85 .52 .92 .46 .98 701.00 1.00

.74 .74 .80 .64 .87 .54 .94 "5 .99 .84 1.00 1.00

.0I 75 75 .2 .65 .89 1 .56 .95 .64 1.0 .93 1.00 1.001V 38 - 1- -
F_ 561.56 .59 .47 62 , .38 .66 .29 .69 . 2 .2
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In section II we looked at two special cases dealing with the mean

interar-'ival time between successive crisis calls. Figure 2 gives a

numerical consideration of these cases. As a function of the mean

interarrival time (I/ ,), the sensitivities of the average blocking probability

(PB) and the average loss probability (PL) are Qiven for three ordinary

loads. When t-0 the mean interarrival time gets large and the values of

PB (m ) and PL (m ) (and hence PB and PL) given by equation (30) serve as the

lower bound on the average loss and blocking probabilities. Analogously,

when ., equations (26) and (28) give upper bounds on these probabilities.

Again, as we pointed out in section I, PB and PL are monotonically increasing

i n ,.
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IV. CONCLUSIONS

In this technical note we present a mathematical model for the link

behavior of crisis calls that may or nay not preempt ordinary calls. This

investigation was conducted in o)r 'Lt, t,) gain a betr j1i rstani1ing of the

behavior of the system with regard to the crisis calls. Armed with this

information, we are now in a position to modify the DCEC network performance

model so that computer-expensive event-by-event simulations will not have to

be -un for each Flash Non-Blocking Study.

Besides the development of the mathematical model, the two main findings

of this report are the bounding of the average loss and blocking probabilities

by expressions which are easily computed, and the monotonic property of these

probabilities with respect to the mean time between crisis calls arrival.

We can elaborate a bit more on this second finding. For the case where

C=1 and a:O, from equation (24) we have

PB=PL= (M-l+ R11 [1]M- (32)M J+P )(2

where

p + _ (33)R l[l]= -- i+

11 1+

If the interarrival time is exponentially distributed then

23
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.z.

The monotonic behavior of PB and PL can be easily seen from equations (32),

(33) and (34).

In fact, the factor a/o is the driver in this monotonic behavior property.

That quantity (a/ ) is the ratio of the mean ordinary call holding time to the

mean interarrival time of the crisis calls. As the time period between

crisis calls tends to become much longer than the average holding time of the

ordinary calls, then a/p - 0 and PB and PL approach the lower bound.

At the other extreme, as the time period between crisis calls becomes much

shorter than the mean holding time of ordinary calls, congestion becomes

more prevalent and PB and PL approach the upper bound.
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